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Abstract 

We generalize to dimension p > 1 the notion of string structure and discuss the related 
obstruction. We apply our results to a model of bosonic p-branes propagating on a principal 
G-bundle, coupled to a Yang-Mills field and an antisymmetric tensor field and in the presence 
of a Wess-Zumino term in the Lagrangian. We construct the quantization line bundle and discuss 
the action of background gauge transformations on wave functions. 
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1. Introduction 

The notion of  string structure is an elegant way of  formulating the absence of  certain 

anomalies for superstrings coupled to gauge fields in the target space [ 1,2]. In this 

paper we will discuss the generalization of  this notion to p-branes with arbitrary odd p. 

Let us begin by choosing a p-dimensional manifold 2? which is compact, connected, 

oriented and without boundary, and a "target space" M, to be interpreted as spacetime. 

A p-brane is a map from Z to M. In order ' to describe the coupling of  the p-brane to 

a Yang-Mills field, we choose a principal bundle P with compact structure group G 
and base space M, with connection defined by some connection form a. We adopt the 

standard convention that G acts freely on P from the right. Let ZM be a shorthand 
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for Maps( ,~ ,M) ,  and similarly with P and G ( 'Maps'  will always mean the space 
of smooth maps between the given domain and target). The configuration space of the 

"p-branes with internal symmetry", .~P, is a principal bundle over XM with structure 
group XG. The right action of g E XG on q~ E 2 P  is given by the pointwise action of 
G o n  P: 

(q~g) (tr) = q~(tr)g(tr) . (1.1) 

In the case of  the string, the loop group SlG has central extensions SlG. A string 
structure is  a prolongation of the principal S 1G bundle S 1P over S 1M to a principal S 1G 

bundle SIP. Note that SiP  is also a circle bundle over SiP. 
In the case p > 1, p odd, the group ZG also has extensions, but unlike the case 

of the string the interesting extensions are not simply central extensions. In the setting 

described above, the natural extensions are parametrized by connections in P and have 

as fiber the space of S l-valued functionals on ZP.  We will denote by ~'G~ the extension 

defined by the connection a. (These extensions will be described more precisely in 
Sections 2--4.) A priori there seem to be two natural ways of generalizing the notion 

of string structure to higher p-branes. One could define a "p-brane structure" as a 
prolongation of XP to a principal bundle XP over XM with structure group ,~G,~; or 
one may define it as a principal S 1 bundle XP over .,~P, together with a faithful right 

action of ZG~ on XP. 

Both notions agree in the case p = 1. We shall follow here the second approach. Note 
that XP, as a fiber bundle over XM, has a standard fiber isomorphic to a circle bundle 
over XG and is not a principal bundle. 

The obstruction to our construction of a "p-brane structure" is given by a certain 
characteristic class of the bundle P, which depends on the class of the extension XG~. 
For the extensions that we shall consider, the obstruction is 

C = kp t r  t~ (p+3)/2 , (1.2) 

where ~b = d a  + ½ [ a , a ]  is the curvature form of a,  tr is the trace in a fixed finite 
dimensional representation of G and kp is a normalization factor chosen in such a way 
that the integral of c over any (p ÷ 3)-dimensional compact manifold without boundary 

is an integer. ( I f  G = SU(N) ,  c is the Chern class C(p+3)/2.) Other polynomial invariants 
can also be used, leading to different group extensions and prolongations. 

In the case of the string, the existence of a string structure can be viewed as a 
condition for the existence of the Dirac-Ramond operator [ 1 ]. This operator is related 
to the supersymmetry charge. It is reasonable to expect that also in the case p > 1 
the existence of a "p-brane structure" is a condition for the existence of an analogue 
of the Dirac-Ramond operator. This operator presumably arises in a supersymmetric 
theory of p-branes in which the degrees of freedom in the fibers of P are replaced 
by suitable chiral fermions. However, in the absence of a supersymmetric Lagrangian 
for p-branes coupled to Yang-Mills, we shall not discuss these aspects here. Instead, 
we shall consider a particular model dynamics for bosonic p-branes which was recently 
discussed [ 3 ]. At the local level it involves, in addition to the Yang-Mills field A, also a 
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(p + 1 )-form B. Invariance under target space gauge transformations (automorphisms of 

P )  results in this model from a kind of Green-Schwarz anomaly cancellation mechanism 

in which the form B plays a crucial role. Unlike the case p = 1, this bosonic theory is 
not expected to be equivalent to its fermionic counterpart, but it reproduces faithfully 
features related to the cancellation of anomalies. We find that the construction of the 
invariant action requires that the characteristic class c vanishes. This is the manifestation 
at the Lagrangian level of the obstruction discussed above. 

AStarting from the invariant action, we construct the circle bundle XP(a,H) with right 
XG~ action (the construction depends on one additional datum, namely the ( p + 2 ) - f o r m  

H given in (5.1) below). This bundle is the quantization bundle; the sections of the 

associated complex line bundle are the Schr6dinger wave functions. We then show that 

the group of target space gauge transformations (automorphisms of P)  can be realized 

on wave functions without extension. Our findings agree with the results of explicit 
canonical calculations in the case of a trivial bundle P = M × G [4,5]. 

2. Extensions of the Lie algebra Xg 

Let g be the Lie algebra of G and Xg = Maps(X,g) the Lie algebra of XG, under 

pointwise commutators. Also, denote by .A the space of g-valued one-forms on X. 
There exist nontrivial extensions of Xg by the abelian ideal Maps(A, iR) [6,7]. These 
extensions can be described as follows. As a vector space, the extended Lie algebra is 

the direct sum X~ ® Maps(A, iN). The Lie bracket is then given by 

[ (x,  y) ,  (x ' ,  y') ] = ( [x,  x ' ] ,  &xy' - &x,y + c2(.; x, x ' )  ) .  (2.1) 

Here c2 is a two-cocycle in Xg with values in Maps(A, iN), i.e. it satisfies: 

6xC2(-; Y,Z) - c2(-; [X, Y], Z)  + cyclic permutations = 0 , (2.2) 

where 8x denotes the infinitesimal gauge variation of a functional of A. The cocycle 

can be written as 

c2(A; X, Y) = f o)2p(A; X, Y) , (2.3) 

2 is a p-form on X depending polynomially on the vector potential A E ..4. where w p 
The form o)2 can be obtained by the dimensional descent procedure from an invariant 

polynomial in the curvature. Starting from the invariant polynomial given in ( 1.2), with 
~b replaced by F = dA + ½ [A, A], one defines the Chern-Simons form w°+2(A) by 

do~°p+2(A) = kp trF (p+3)/2 . (2.4) 

The superscript 0 refers to the degree of o~ as a cochain on the Lie algebra X~, while 
the subscript (p + 2) refers to its degree as a differential form. The coboundary of the 
Chern-Simons form defines (up to an exact form) the one-cochain 1 COp+ 1 : 
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6 x w ° + 2 ( A ) =  dwv+ 1 1  ( a , x )  . (2.5) 

It can be written as 

tolp+l ( A,  X )  = tr d X  ~p ( A ) , (2.6) 

where the p-form q~p = ¢I~pTa is a polynomial in A and F. For p = 1,3, 5 this polynomial 
is given by 

( I ) 1  = - -  k l A  , (2.7a) 

ci)3 = - -  ½k3(FA + A F  - A 3) , (2.7b) 

q~5 = - ½ks [(F2A + F A F  + A F  2) - 4 (AaF + FA 3) 

- 2 (A2FA + AFA 2) + 3A5]. (2.7c) 

l 2. The coboundary of t op+  l defines top. 

~3xtOlp+l(A,y) _ 1 l = d o j 2 ( A , X , Y )  (2.8) 6rtOp+ 1 (A, X)  - tOp+l ( A,  [ X, Y] ) . 

In the cases p = 1,3, 5 we have 

to2(A, X, Y)  = - 2 k l  t r X d Y ,  (2.9a) 

oF(A, x, Y) = -k3 tr[ dX, dV] A ,  (2.9b) 

w2(A ,  X, Y) = ~k5 tr(5F - 3A 2) (2A [dX, dY] - d X A d Y  + dYAdX)  . (2.9c) 

These are the forms that we shall use in the definition of the cocycles (2.3). In particular 
for p -- 1 this gives the familiar central term of a Kac-Moody algebra; since it is 
independent of A in this special case the fiber can be restricted to the constant functions. 

It will be useful to consider also the cocycles c2 differing from c2 by the coboundary 
of the one-cochaln ~ ( A ,  X)  = f x  trXqbp (A): 

d 2 ( A , X , Y )  = c 2 ( A , X , Y )  - ( ~ x ~ ( A , Y )  - t S r ~ b ( A , X )  - ~ ( A ,  [ X , Y ] )  ) . (2.10) 

These cocycles can also be written in the form (2.3), with 

& 2 ( A , X , Y )  = kl tr[X,Y] A ,  (2.11a) 

& ~ ( A , X , Y )  = ½ k 3 t r ( [ X , Y ] ( F A  + A F -  A3) + X d A Y A -  XAYdA)  , (2.11b) 

thE(A, X, Y) = lk5 tr { [X, Y] [2(F2A + A F  2) + F A F  - A3F - FA 3 

- A2FA - AFA 2] + 2 ( X d A Y  - YdAX) (FA + A F  - A 3) 

- 2 ( X A Y  - Y A X ) d ( F A  + A F  - A 3) } . (2.1 lc) 

Let us now fix a connection in P with connection form a. The pullback of a by means 
of the map q~ is an element of ,,4 and the right action (1.1) of 2 G  on ~?P induces a 

gauge transformation on the potential ~*a: 

(~og)* a = g - I  (~o* ot)g + g - l d g  . (2.12) 

Consider the two-cocycle c~ with values in M a p s ( 2 P ,  i~,) defined by 

c~(q~; X, Y) = c2(q~*c~; X, Y) . (2.13) 
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(In the following we will drop the primes for notational simplicity.) It gives rise to an 

extension of Xg by Maps(XP, iN), denoted by XIt~. These are the extensions arising in 
p-brane theory. 

3. Cohomology of XP 

It will be useful to view the cocycles (2.13) from a different point of  view. We recall 

that given an dement  X of the Lie algebra g of G one can construct a vector field )? on 
P, called a fundamental vector field, generating the right action of G. This map is an 

isomorphism from g to the vertical subspace at each point in P. Given a k-form flk on 

2P ,  one can construct a k-cochain Ck on £g  with values in Maps(2fP, iR) by 

Ck(q~; Xl . . . . .  Xk) = (flk(~O)) (21 . . . . .  2 t )  • (3.1) 

Conversely, given a k-cochain ck one can always find a k-form flk on XP satisfying 

(3.1). Clearly this form is not uniquely defined: only the restriction of flk tO the fibers 

of XP is determined by this condition. We thus have a surjective map from k-forms on 
XP to k-cochalns on Xg with values in Maps(XP, iR). The kernel of this map consists 

of the forms whose contraction with a vertical vector vanishes. Under this map, the 

exterior differential of flk is mapped to the coboundary of Ck. Closed (exact) forms are 
mapped to cocycles (coboundaries). However, note that, if Ck is a cocycle, there are 
forms flk satisfying (3.1) which are not closed. All that is required of dfl~ is that its 

restriction to the fibres vanishes. 
We would like now to find a two-form on XP which is related to the the two-cocycle 

(2.13) by the map defined above. This will require some other preliminaries. We recall 

first that there is a map E from (k + p)-forms on M to k-forms on XM given by 

(ET)~(Vl . . . . .  vk) = [ ~p*y(vl . . . . .  vk,. . . . . .  .) . (3.2) 

The same map can be defined with M replaced by P or G. This map commutes with 
the exterior differential and hence defines a map of cohomology classes. It is also dual 

to the evaluation map in the sense that fNk E7 = fev(N~) 7, where Nk is a k-dimensional 
submanifold of  ,~M and its evaluation is a (k + p)-dimensional submanifold of  M. Due 

to this property, E maps integral cocycles to integral cocycles. 
Let us recall also the definition of the transgression in the bundle P. Consider a 

closed k-form tic in the fiber G which is the restriction of a k-form fl in P such that 
dfl = 7r*y for some ( k +  1) form y in M. Then one says that [y] E Hk+I(M) is the 
transgression of [t ie] E Hk(G).  The classic example of transgression is provided by 
the Chern-Simons form to°+2(cr). Since the restriction of a connection form a to a fiber 
coincides with the left-invariant Maurer-Cartan form g-ldg,  the restriction of to°+2 (ct) 

to a fiber is 

0 --1 tr = tOp+2(g dg) = kpap tr (g- ldg)  p+2 , (3.3) 
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where 

( :+ ) ap = ( - 1 )  Cp+l)/2 P 2  -------~3 F F ( p + 3 ) .  

From (2.4) (with a and ~b replacing A and F)  there follows that [o-] E Hp+2(G) 
transgresses to [c] E Hp+3(M). 

Our construction will be based on the image of this argument under the map E. The 

only complication is that the restriction of Eto°+2(a) to a fiber of 27P is in general not 
equal to Eo-, since the differentials of a general map ~ are not vertical. For this reason, 

it will be convenient to choose a basepoint ~P0 in 27P which maps 27 to the fiber of P 
over the basepoint x0 of M. Thus the composition of ~P0 with the projection 7r : P --~ M 

is the constant map x0. We will call the fiber through ~0 the "typical fiber", and identify 
it with the group 27G. The restriction of Ew°p+2(a) to the typical fiber is equal to Err, 
because the differentials of  maps in the typical fiber are vertical in P. 

0 A direct calculation shows that under the map defined by (3.1) the two-form Etop+ 2 

is mapped to the cocycle -d2. In fact, using that on a fundamental vectorfield a ( X )  = X 
and ~b(.~,-) = 0, one finds 

(E~o°+2(-))~(g, ?) 

= - (p + 2)kpap f ~* tr (XYa p - XaYot p-l  + . . . .  XaPY) 

2 

= - ~2(~*te; X, Y) . (3.4) 

It was shown in (2.10) that ~2 is cohomologous to c2. We can now find a two-form 

~b which is related to the cocycle cz. Consider the one-form T on 27P defined by 
T(v)  = f .~tra(v)~p( te) .  When evaluated on a fundamental vectorfield, this form is 
seen to correspond to the cochain ~. Therefore, the form 

~b = -(Eto°+2(ce) + d T )  (3.5) 

is related to the cocycle c2 as in (3.1). We emphasize at this point that the form ~b is 
neither closed nor integral. However, its restriction to the fibers is closed and integral. 

It is determined by c2 only up to a form whose contraction with a vertical vector field 
is zero. In particular, it is defined up to a basic form. 

In all of  the above the connection a in P was kept fixed. We can now prove that the 
cohomology class of the extension does not depend upon the choice of connection. Let 
~p and ~pt be constructed as above starting from two different connections a and d .  The 
difference ~p' - ~  is equal to E(to°+2(a ' )  - w ° + 2 ( a ) )  plus an exact form. From Eq. 
(2.4) and the definition of the Weil homomorphism it follows that 0 ~p+2(~  ) - ~ ° + 2 ( a )  
is the sum of a basic and a closed form. Using the properties of E, also E( to°+2(a~  t)  - 

to°+2(a) ) is the sum of a basic and a closed form. Therefore the restriction of ~p' - ~p 
to a fiber of 2 P  is closed. In fact, it has to be exact. This is because the restriction 
of 0 ( , ,  Op+2 ~ ) --  tO0+2(O~) to any fiber of  P is zero, and therefore the restriction of 
E(to°+2(ot ' )  - tO°+E(Ot)) to the typical fiber defined above is also zero. Forms in 27G 
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obtained by restriction of a form on 2 P  to different fibers have to be cohomologous. 
Therefore the restriction of ~b ~ - ~ to any fiber of XP has to be exact. This proves that 
the cocycles c2(q~*a) and c2(~o*d) are cohomologous. 

4. Extensions of .YG 

We are now going to assume that XG is simply connected. This is the case if X is the 
unit sphere S p and G is connected, simply connected and has 7 r p + l ( G  ) = 0 (the most 
important example being G = SU(N) with N >_ (p + 3 ) /2 ) .  Then, there is a one-to-one 
correspondence between extensions of the Lie algebra Xg and extensions of the Lie 
group XG. The extensions of Xg by Maps(A, iR) give rise to topologically nontrivial 
extensions of XG by the abelian group Maps(A, S l ), which have been described in 
Ref. [7]. We are now going to describe the extension 2G~ corresponding to the Lie 
algebra Xg~. 

We begin by defining N = Xx [0, 1] and fix a basepoint in each connected component 
of XG. We assume that the basepoints have been chosen in such a way that the product 
of two basepoints is another basepoint. The basepoint in the connected component of 
the identity has to be the identity map. One can extend every map g : X ~ G to a map 

: N ~ G, such that g(tr,  1) = g(o') and g(o-,0) is the basepoint in the connected 
component containing g. One can also think of ~ as a path in XG beginning at the 
basepoint and ending at g. Consider pairs (~, A), where ~ E NG - Maps(N, G) and 2t E 
Maps(XP, S I ). We define an equivalence relation on these pairs: (~, A) ,.~ (~', A ~) if the 

two paths have the same endpoints ~( 1 ) = ~ (  1 ) = g and A~(q~) = A(~o) exp(27ri fs O), 
where S = S[~o,~,~'] is a two-dimensional surface in XP bounded by the paths ~o~ and 
~o~ ~, both originating at ~o and ending at tpg. Note that one can choose S to lie entirely 
in the fiber tA~ough ~p and therefore the integral is not affected by the arbitrariness in ~b. 
The group XG, consists of these equivalence classes of pairs, with the multiplication: 

[ ( g l ,  •1 ) ] [ (gz, /~2)  I = [ ( g lgz ,  'h.l (g l  ' a2)e 2rri02(''~1'~'2) ) ] , (4.1) 

where 02 is a suitable functional of ~o, ~1 and ~2 and the left action of NG on 
Maps(XP, S 1) is defined by (~.  A)(~0) = A(~pg). For associativity, 02 has to be a 

two-cocycle: 

02 (~Pg l , gz ,g3 )  -- 02(~0, g l g 2 , g 3 )  "[- 0Z(~0, gl ,g2g3)  -- 02(~O, g l , g 2 )  ~ 0 mod Z . 
(4.2) 

In order to reproduce the infinitesimal cocycles (2.4), the phase has to be chosen as 

= [ O ,  (4.3) 0 2 ( ~ ,  g l ,  g2) 
J 
K 

where K is the two-dimensional simplex in 2P with vertices in ~o, ~ogl, ~Pglg2 and 
bounded by the curves ~o~1, q~1~2 and ~ogl~2 (with the obvious notation ( g l g 2 ) ( / )  = 
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~1 ( t )~2( t ) ) .  The associativity is then automatically satisfied. In fact if we call 7" a locally 
defined one-form in the fiber through ~o such that d7 coincides with the restriction of ~b 
and define 0(~o,~) to be the line integral f ~  r along the path ~0~, then 

02(~o, ~1, ~2) = 0(q~l ,  ~2) - 0(~o, ~1~2) + 0(q~, ~1 ) • (4.4) 

The proof that the multiplication (4.1) is independent of the representatives on the l.h.s. 
boils down to showing that 

f O- -  f ~// -- 02(~, g], g2) nt- 02(~, gl, g2) = 0 m o d Z ,  (4.5) 

S[ tP,~l~2 ,~'1 ~2 ] S[ tp,~l,~ l 

f ~h -  f 0 -  02(~0,~1,~2)+ 02(~0,~1,~)= 0 m o d Z .  (4.6) 

These relations are indeed true for 02 defined as in (4.3), since their 1.h.s. are the 
integrals of ~b on closed two-dimensional submanifolds in a fiber of ,,~P, and the 
restriction of ~p to the fiber is closed and integral. Note also that 02 is not affected by 
the arbitrariness in ~b wwhich was discussed in the previous section. 

The fiber bundles ZG,~ -* ZG may or may not be trivial; this depends on the choice 
of G and Z. For example, when G = SO(N)  or any closed subgroup of SO(N)  and 

p = 4 n -  1 the bundles become trivial. The reason is simply that the characteristic 
classes tr~b 2n+l vanish identically when the curvature ~b takes values in the Lie algebra 
of antisymmetric real matrices. On the other hand, when G = SU(N)  and p _< 2N - 3 
then the characteristic classes tr  ¢~(p+3)/2 are non trivial. In these cases the Chern-Simons 

form w°+2(a),  when restricted to a fiber of P, coincides with the form tr defined in 
(3.3) (the WZWN anomaly); this in turn implies that the form ~p used in the definition 
of the extension is topologically nontrivial. 

5. The circle bundle ,,~P(a,hr) 

In the introduction we have defined a "p-brane.. structure" in P to be a circle bundle 
over £ P  together with a faithful right action of £G~ coveting the action of £G on £P .  
We will now give a construction of a "p-brane structure" based on the assumption that 
the characteristic class (1.2) vanishes. It seems plausible that [c] = 0 is also a necessary 
condition for the existence of such a structure, but we shall not investigate this question 
here. 

Assume there exists a basic (p + 2)-form H on P such that c = dH. Then 

J'2 ---- ¢O0p+2(O~) -- n (5.1) 

is a closed (p + 2)-form on P. One can choose H so that/2 is also integral [8]. From 
(3.5) and the properties of E we find that the two-form O in ~P  defined by 

0 = - ( E l l +  dT) = ¢ + EH (5.2) 
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is closed, integral and is related to c2 by the map (3.1). If ZP is simply connected, O 

can be used to construct a circle bundle with connection ZP(,~,H) over EP. 
Again we denote N = E x  [0, 1] and choose a basepoint in each connected component 

of EP. We assume that each connected component of ZP is simply connected. We extend 
the maps ~p : 2 --+ P to maps ~ : N -~ P, which can be regarded as paths in ZP from 
the basepoint ~0 to ~. The total space of the bundle ,~P(mH) is (Maps(N, P) x S 1 )/,.., 
where ~ is the equivalence relation given by 

(~b,a) --~ (~b',ae Js ) ,  (5.3) 

where ~b(1) = ~b~(1) = ~o and S = S[~b,~b ~] is a two-dimensional submanifold of .SP 
bounded by the paths ~b and ~b ~. Such a manifold always exists since we have assumed 
that 2 P  is simply connected and therefore any two homotopies with the same endpoints 
can be deformed into each other. We denote points of EPf,~,n) by equivalence classes 
of pairs [ (~ ,A) ] .  

We define a right action of .YG,~ on XP(,~,H) by 

[ ( ~, A) ] • [ (~, ! x) ] = [ (~b. ~, ( A. ~) Ixe 2~rix((°'~) ) ] . (5.4) 

The phase factor is defined by 

X(~,g) = : 0 ,  (5.5) 
o ,  

K 

where K = K[~b,~] is the two-simplex in £ P  with vertices in ~o0, tp, ~og and bounded 
by the paths ~b, ~o~ and ~b~. Note that, unlike in Section 4, the phase is now defined as 
an integral of O rather than ~p. This is because the surface K does not lie in a fiber of 
,~P and ~9 was closed and integral only when restricted to a fiber. 

To prove that this action is independent of the representatives on the I.h.s. one has to 
show that 

X ( ~ ' , g ) - x ( ~ , g ) -  f O +  / O = 0  m o d Z ,  (5.6) 

s[~,~'~] s[,~,~'] 

X ( ~ b , ~ ' ) - X ( & , ~ ) -  f O +  f O = 0  m o d Z .  (5.7) 

S[¢L,~'] s[ ~o~,~o~t' ] 

These relations are indeed true, since their left hand sides are the integrals of O on 
closed two-dimensional submanifolds of 2P .  

Finally we have to show that this action is compatible with the group multiplication 
given in (4.1). Acting on [(~b, ix)] with [ (~ l ,Ai) ]  and then with [(~2, A2)], and 
comparing with the action of the product of these group elements, we are led to the 
condition that the coboundary of X has to be 02: 

x ( ¢ g l , g 2 )  - -  X ( ¢ , g l g 2 )  - -  X ( ¢ , g l )  = 0 2 ( ~ , g l , g 2 )  mod Z . (5.8) 

This condition is again true, as one can easily verify by considering the tetrahedron in 

.,~P with vertices in q~o, ~P, q~gl, q~glg2 and with edges ~, ~ 1 ,  ~'~1~2, ~P~I, q~glg2, ~Pgl~2. 
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The three faces touching q~0 give the three terms on the 1.h.s. The remaining face lies 

entirely in the fiber through q~ and therefore the integral of O on that face is equal to 
the integral of ~b, thus reproducing (4.3). 

6. A model of bosonic p-branes 

Fix a riemannian metric g on M and an invariant positive definite bilinear form (-,-) 
in the Lie algebra g. For any principal connection in P one can construct a unique 

riemannian metric on P such that the following holds: i) the horizontal and vertical 

spaces are orthogonal, ii) the inner product of horizontal vectors is equal to the inner 

product of their projections to M and iii) the inner product of vertical vectors is equal 
to the inner product of  the corresponding Lie algebra elements. 

The manifold 2 is endowed with a riemannian metric % The time evolution of the 

p-brane is given by a map, still denoted q~, from ~ x I to P, where I is a time interval. 
The action is the sum of a kinetic and a topological part: S = Skin + Stop. The kinetic 

term is 

Skin = 1 f dPo.dt ~-~--~/ iJ(ai~o,  a j~)p  , (6.1) 

.~xl 

where ( . , . ) j ,  is the riemannian inner product defined above and the riemannian metric 

3' of 2 has been extended to a product Lorentzian metric on 2 × I. In order to define 

the topological term we assume that space-time is compact and without boundary. This 
can be done by compactifying I to S 1 . Then 

Sto p = f •*d"2, (6.2) 
NxS I 

where 12 has to be a closed integral (p + 2)-form on P. At each time the field q~ is 

extended to a map N --* P as before. We choose 12 to be as in (5.1). 
To make contact with earlier work, we compute the form of the action with respect 

to a local trivialization of P. I f  (x, h) are local coordinates on P, the connection form 
is given by 

or(x, h) = h - l d h  + h - l A ( x ) h  , (6.3) 

where A, a locally defined form on M, is the Yang-Mills potential. Locally, the map q~ 
can be represented by a pair of maps x : ~ --, M and h : 2 ---, G. The differential of  
q~ can be decomposed into vertical and horizontal parts: dq~ = (dx, dh) = (O, dh ÷ h • 
x ' A )  + ( dx, - h  . x ' A ) .  Inserting into (6.1), 

, /  ski. = ~ apcrclt ~ , i j  [g(Oix, Ojx) 
.V.×l 

+ (h-laih + aix~A~, h- la jh  + ajx~A~)]. (6.4) 
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For the topological term we observe that, using (6.3), 

to°+2(te) = tO°p+z(A) + d C ( A ,  dhh - ] )  + to°+2(dhh - l )  , (6.5) 

where the p + 1 form C is a differential polynomial in the indicated arguments. Fur- 
thermore, we can define locally a (p + 1)-form B on M such that 

H = w°+2(A) + dB . (6.6) 

Then 

12 = w°+2(dhh -1) ÷ dC - dB . (6.7) 

This is the topological term given in Ref. [3] (in comparing with Ref. [3] one has to 

take into account that here we are gauging the left action of G on itself whereas in Ref. 

[3] the right action was gauged, contrary to what is stated there). 
Strictly speaking, in the case p > 1 the only invariance of the action is the finite 

dimensional group G acting on q~ by right multiplication. This is because the connection 

c~ is not a dynamical variable and therefore should be treated as a fixed background. 
However, if one transforms also a, the action is also invariant under the group ~ = .Ant P 
acting on q~ by composition and on a and H by pullback (in particular, since H is basic, 

it is invariant). 
In the Schrfdinger picture the wave functions are sections of a complex line bundle 

/: over 2P .  The choice of the (equivalence class of the) line bundle is dictated by 
the action principle. In the present case the line bundle is obtained as the associated 

bundle to the circle bundle ZP(~,H) through the natural representation of S 1 in C. This 
can be checked by comparing the anomalies of the Poisson brackets of Noether charges 

associated to the symmetry group of right G multiplications on P and the commutator 
anomalies (2.11 ). It was found in Ref. [ 5 ] that in the case of a trivial bundle P = M x G, 

the Poisson bracket algebra of the Noether charges associated to the right action of G 

on P has an extension given by the cocycle c2 (h - ]dh ) .  On the other hand, we recall 

from Section 3 that the cohomology class of the extension Zg,~ is independent of the 
connection a. Thus if P is a trivial bundle one can choose without loss of generality 
the flat connection for which a is equal to the left-invariant Maurer-Cartan form. This 
means that if one wants to lift the action of ZG on ZP to the quantization bundle, 

the group has to be extended to ~Gh-ldh. ThUS the quantization bundle is 2P(h-ldh,H). 

Essentially the same local computations apply, using local trivializations, in the general 

case. 
Up to this point we have considered the construction of the circle bundle ~P(~,n) for 

fixed a and H. Let M be the set of all pairs ( a ,  H)  __such that oJ°+2(a) - H is closed 
and integral. Now consider the union of all bundles £P(,~,n); since the construction of 
these bundles depended smoothly on the data (a ,  H),__ we obtain a bundle 2 P  over .A~ 
with fibers £P(~,n). We can represent points of £ P  as quadruples (~,  A, a ,  H) ,  with 
the equivalence relation (~,  A, a ,  H)  ,,~ ( ~ ,  Aexp(27ri fs  12)' a,  H) ,  where S is as in 

(5.3). Note that £ P  is also a circle bundle over £ P  x .At. 
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The gauge group G = .AutP acts on ,~P by composition: for u E ~, (u .  p ) ( t r )  = 
u(p(tr)). This definition can be applied also to maps from N to P. The automor- 

phisms act also on forms on P by pullback. In particular, this gives the usual action on 
connections, and a trivial action on basic forms such as H. 

We would like to lift this action of ~ on ZP  × A4 to an action on 2P .  The obvious 
definition of the action of G is 

u[(qb, A , a , H ) ]  = [ ( u - c ~ , A , u - l * a , H ) ] .  (6.8) 

If  we apply this to equivalent quadruples we find that since co°+2(u-l*a) = u - l*  x 

oJ°+2 (or), also the transformed quadruples are equivalent. Therefore the definition given 

above goes to the quotient and defines an action of G on ~P.  In this case there is no 

extension, and at the infinitesimal level no commutator anomaly. Again this agrees with 
the result of  Refs. [4,5] for a trivial bundle. Note that if one writes H locally in the 

form (6.6), the gauge variations of  the two terms on the r.h.s, have to cancel. Using 
(2.5), the gauge variation of B has to be 8xB = --(-Op+ 11  (A, X), up to an exact form. 
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